Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sep Sci ; 46(18): e2300343, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37603367

RESUMEN

The analysis of organic acids in complex mixtures by LC-MS can often prove challenging, especially due to the poor sensitivity of negative ionization mode required for detection of these compounds in their native (i.e., underivatized or untagged) form. These compounds have also been difficult to measure using supercritical fluid chromatography (SFC)-MS, a technique of growing importance for metabolomic analysis, with similar limitations based on negative ionization. In this report, the use of a high proton affinity N-(4-aminophenyl)piperidine derivatization tag is explored for the improvement of organic acid detection by SFC-MS. Four organic acids (lactic, succinic, malic, and citric acids) with varying numbers of carboxylate groups were derivatized with N-(4-aminophenyl)piperidine to achieve detection limits down to 0.5 ppb, with overall improvements in detection limit ranging from 25-to-2100-fold. The effect of the derivatization group on sensitivity, which increased by at least 200-fold for compounds that were detectable in their native form, and mass spectrometric detection are also described. Preliminary investigations into the separation of these derivatized compounds identified multiple stationary phases that could be used for complete separation of all four compounds by SFC. This derivatization technique provides an improved approach for the analysis of organic acids by SFC-MS, especially for those that are undetectable in their native form.

2.
J Am Soc Mass Spectrom ; 34(8): 1724-1730, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37427806

RESUMEN

Isobaric tags typically leverage an a1 type fragmentation to produce constant mass reporter ions. While this motif allows for efficient reporter formation, isobaric tags lack structural diversity, which limits the number and type of isotopes that are synthetically available. Presented here are two examples of dual fragmentation isobaric tagging. The first example mimics the typical isobaric tag structure through trimethylamine neutral loss and cyclization. Subsequent fragmentation releases a constant mass reporter with high efficiency. This provides a route to create a variety of isobaric tags with regard to both the reporter and the balancer mass. The second example is a set of six-plex isobaric, thiol-reactive tags that produce constant mass reporters by a similar sequential fragmentation mechanism. A trimethylamine neutral loss allows for the incorporation of up to 13 total isotopes in the balancer region, while minimizing deuterium retention time shifts. A subsequent C-S bond cleavage produces a constant mass reporter in the low-mass region. The thiols investigated produced an average RSD of 14% and R2 of 0.98 when analyzed as a six-plex injection. Thiol metabolism was disrupted using the glutamyl-cysteine synthetase inhibitor buthionine sulfoximine (BSO). Endothelial cells were incubated with BSO and showed significant decreases in glutathione and cysteinyl-glycine compared to control. Overall, a new method to generate constant mass reporters using a dual fragmentation scheme is presented.


Asunto(s)
Células Endoteliales , Metabolómica , Isótopos , Compuestos de Sulfhidrilo
3.
J Am Soc Mass Spectrom ; 34(6): 995-1005, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37097105

RESUMEN

Nanospraying supercritical fluids coupled to a mass spectrometer (nSF-MS) using a 90% supercritical fluid CO2 carrier (sCO2) has shown an enhanced desolvation compared to traditional liquid eluents. Capillaries of 25, 50, and 75 µm internal diameter (i.d.) with pulled emitter tips provided high MS detection sensitivity. Presented here is an evaluation of the effect of proton affinity, hydrophobicity, and nanoemitter tip size on the nSF-MS signal. This was done using a set of primary, secondary, tertiary, and quaternary amines with butyl, hexyl, octyl, and decyl chains as analytes. Each amine class was analyzed individually to evaluate hydrophobicity and proton affinity effects on signal intensity. The system has shown a mass sensitive detection on a linear dynamic range of 0.1-100 µM. Results indicate that hydrophobicity has a larger effect on the signal response than proton affinity. Nanospraying a mixture of all amine classes using the 75 µm emitter has shown a quaternary amine signal not suppressed by competing analytes. Competing ionization was observed for primary, secondary, and tertiary amines. The 75 and 50 µm emitters demonstrated increased signal with increasing hydrophobicity. Surprisingly, the 25 µm i.d. emitter yielded a signal decrease as the alkyl chain length increased, contrary to conventional understanding. Nanospraying the evaporative fluid in a sub-500 nm emitter likely resulted in differences in the ionization mechanism. Results suggest that 90% sCO2 with 9.99% methanol and 0.01% formic acid yielded fast desolvation, high ionization efficiency, and low matrix effect, which could benefit complex biological matrix analysis.

4.
Analyst ; 148(2): 297-304, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36533920

RESUMEN

Isobaric labelling of fatty acids is complicated by chromatographic co-elution of double bond isomers. This produces contaminated spectra which can mask important biological changes. Here two derivatization strategies are combined to improve throughput and produce MS2 reporters which change mass depending on double bond position. A 6-plex isobaric tag is attached to the acid group, followed by the tosylation of the double bond using chloramine-T. These two derivatizations allowed for the chromatographic resolution of nearly all investigated isomers using a 3.5 minute ultrafast method. Further isomer differentiation is achieved upon fragmentation as reporter masses scale with the double bond location. This occurs by a dual-fragmentation route which reveals the isobaric labelling and fragments along the double bond of each analyte. These unique fragments allowed for accurate quantitation of co-isolated double bond isomers where traditional isobaric tags would experience ratio distortion. Saturated and monounsaturated fatty acids were characterized by this rapid 6-plex method and produced an average signal RSD of 9.3% and R2 of 0.99. The method was then used to characterize fatty acid dysregulation upon inhibition of stearoyl CoA desaturase with CAY10566.


Asunto(s)
Ácidos Grasos Monoinsaturados , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión , Isomerismo , Ácidos Grasos
5.
J Am Soc Mass Spectrom ; 33(10): 1825-1832, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36049155

RESUMEN

Supercritical fluids are typically electrosprayed using an organic solvent makeup flow to facilitate continuous electrical connection and enhancement of electrospray stability. This results in sample dilution, loss in sensitivity, and potential phase separation. Premixing the supercritical fluid with organic solvent has shown substantial benefits to electrospray efficiency and increased analyte charge state. Presented here is a nanospray mass spectrometry system for supercritical fluids (nSF-MS). This split flow system used small i.d. capillaries, heated interface, inline frit, and submicron emitter tips to electrospray quaternary alkyl amines solvated in supercritical CO2 with a 10% methanol modifier. Analyte signal response was evaluated as a function of total system flow rate (0.5-1.5 mL/min) that is split to nanospray a supercritical fluid with linear flow rates between 0.07 and 0.42 cm/sec and pressure ranges (15-25 MPa). The nSF system showed mass-sensitive detection based on increased signal intensity for increasing capillary i.d. and analyte injection volume. These effects indicate efficient solvent evaporation for the analysis of quaternary amines. Carrier additives generally decreased signal intensity. Comparison of the nSF-MS system to the conventional SF makeup flow ESI showed 10-fold signal intensity enhancement across all the capillary i.d.s. The nSF-MS system likely achieves rapid solvent evaporation of the SF at the emitter point. The developed system combined the benefits of the nanoemitters, sCO2, and the low modifier percentage which gave rise to enhancement in MS detection sensitivity.


Asunto(s)
Dióxido de Carbono , Metanol , Aminas , Espectrometría de Masas/métodos , Solventes/química , Espectrometría de Masa por Ionización de Electrospray/métodos
6.
ACS Meas Sci Au ; 2(3): 287-295, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35726255

RESUMEN

Isobaric labeling in mass spectrometry enables multiplexed absolute quantitation and high throughput, while minimizing full scan spectral complexity. Here, we use 4-plex isobaric labeling with a fixed positive charge tag to improve quantitation and throughput for polar carboxylic acid metabolites. The isobaric tag uses an isotope-encoded neutral loss to create mass-dependent reporters spaced 2 Da apart and was validated for both single- and double-tagged analytes. Tags were synthesized in-house using deuterated formaldehyde and methyl iodide in a total of four steps, producing cost-effective multiplexing. No chromatographic deuterium shifts were observed for single- or double-tagged analytes, producing consistent reporter ratios across each peak. Perfluoropentanoic acid was added to the sample to drastically increase retention of double-tagged analytes on a C18 column. Excess tag was scavenged and extracted using hexadecyl chloroformate after reaction completion. This allowed for removal of excess tag that typically causes ion suppression and column overloading. A total of 54 organic acids were investigated, producing an average linearity of 0.993, retention time relative standard deviation (RSD) of 0.58%, and intensity RSD of 12.1%. This method was used for absolute quantitation of acid metabolites comparing control and type 1 diabetic urine. Absolute quantitation of organic acids was achieved by using one isobaric lane for standards, thereby allowing for analysis of six urine samples in two injections. Quantified acids showed good agreement with previous work, and six significant changes were found. Overall, this method demonstrated 4-plex absolute quantitation of acids in a complex biological sample.

7.
J Chromatogr A ; 1670: 462952, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35339020

RESUMEN

LC-MS metabolomic analysis in complex biological matrices may be complicated by degeneracy when using large-bore columns. Degeneracy is the detection of multiple mass spectral peaks from the same analyte due to adduction of salts to the metabolite, dimerization, or loss of neutrals. This introduces interferences to the MS spectra, diminishes quantification, and increases the rate of false identifications. Analysis using 2.1 mm inner diameter (i.d.) columns typically leads to degenerate peaks whereas nanospray using capillary columns (25, 50, and 75 µm i.d.) reduces degeneracy. Optimization of chromatographic parameters of capillary LC for amino acid standards showed the lowest HETP at 1.25 mm/sec across all capillary i.d. columns. Results suggest mass-sensitive detection below the optimum velocity. At faster velocities, concentration-dependent detection occurred across all capillaries. The 2.1 mm i.d. analytical scale column showed the greatest level of degeneracy, particularly in the low signal intensity range. 25 µm i.d. columns showed higher levels of metabolite annotation for the same signal intensity range. It also provided the lowest level of degeneracy, making it best suited for untargeted analysis. The 25 µm i.d. column achieved a peak capacity (nc) of 144 in a 30-minute gradient method with nc decreasing as the column i.d. increased. 75 µm i.d. capillary columns showed the highest signal intensity, which is beneficial for targeted analysis. These effects of chromatographic performance, resolution, and degeneracy profile of capillary and analytical scale columns were compared for metabolomic analyses in complex serum and cell lysate matrices.


Asunto(s)
Capilares , Espectrometría de Masas en Tándem , Cromatografía Liquida , Metabolómica
8.
Anal Bioanal Chem ; 414(11): 3329-3339, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35274156

RESUMEN

Use of 3D printing for microfluidics is a rapidly growing area, with applications involving cell culture in these devices also becoming of interest. 3D printing can be used to create custom-designed devices that have complex features and integrate different material types in one device; however, there are fewer studies studying the ability to culture cells on the various substrates that are available. This work describes the effect of PolyJet 3D-printing technology on cell culture of two cell lines, bovine pulmonary artery endothelial cells (BPAECs) and Madin-Darby Canine Kidney (MDCK) cells, on two different types of printed materials (VeroClear or MED610). It was found that untreated devices, when used for studies of 1 day or more, led to unsuccessful culture. A variety of device treatment methodologies were investigated, with the most success coming from the use of sodium hydroxide/sodium metasilicate solution. Devices treated with this cleaning step resulted in culture of BPAECs and MDCK cells that were more similar to what is obtained in traditional culture flasks (in terms of cell morphology, viability, and cell density). LC-MS/MS analysis (via Orbitrap MS) was used to determine potential leachates from untreated devices. Finally, the use of a fiber scaffold in the devices was utilized to further evaluate the treatment methodology and to also demonstrate the ability to perform 3D culture in such devices. This study will be of use for researchers wanting to utilize these or other cell types in PolyJet-based 3D-printed devices.


Asunto(s)
Células Endoteliales , Espectrometría de Masas en Tándem , Animales , Bovinos , Técnicas de Cultivo de Célula , Cromatografía Liquida , Perros , Impresión Tridimensional
9.
Anal Chim Acta ; 1190: 339260, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34857138

RESUMEN

Biological aldehydes are difficult to analyze by electrospray ionization mass spectrometry due to their poor proton affinity and low biological concentrations. Chemical derivatization with stable isotope tags is used here for sample multiplexing, increased throughput, improved signal intensity, and quantitation. Nine quaternary amine tags with mass differences as low as 0.0058 Da had no observable chromatographic shifts, small amounts of ion suppression, and minimal matrix effects. Low concentration perfluoropentanoic acid was used as an ion pairing reagent to improve the retention of derivatized aldehydes. Perfluoropentanoic acid addition showed an average of three-fold improvement in limits of detection, 50% reduction in peak width, and 2.5 fold increase in analyte retention. Analysis of fifteen tagged aldehydes yielded an average of 13 nM limit of detection, 9 %RSD, R2 of 0.995, and linear dynamic range of 40-1000 nM. In a single 20 min separation, absolute quantitative data was obtained for 11 reactive aldehydes across 8 aortic endothelial cell samples. High glucose treatment produced significant changes to malondialdehyde, decanal, and (2E)-hexadecenal. These changes are consistent with glucose-induced oxidative stress. This method demonstrates that neutron encoded tagging of aldehydes is suitable for the analysis of complex samples.


Asunto(s)
Aldehídos , Espectrometría de Masa por Ionización de Electrospray , Cromatografía Liquida , Células Endoteliales , Neutrones
10.
Anal Bioanal Chem ; 413(9): 2493-2501, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33665672

RESUMEN

Sample preparation methodology is critical to obtaining reliable data for studying endogenous metabolites. Dependable preparation techniques require separation of cells from culture media, quenching of enzymatic activity, and extraction of metabolites from the cells. Presented here is a simple, rapid, semi-automated metabolomic sample preparation technique for 20 µL samples of RAW 264.7 cells suspended in culture media. This method uses online filter-assisted electroporation-based cell lysis and chilled organic solvent extraction to prepare metabolomic samples from cells in suspension in 2 min. Experiments using an isotopically labeled adenosine triphosphate internal standard were carried out to ensure enzymatic quenching by monitoring the ratio of labeled adenosine diphosphate to adenosine triphosphate. Cells were metabolically labeled with 13C-glucose concurrent with sampling aliquots of the cell suspension over the course of 24 h. Incorporation of 13C into organic acid metabolites such as itaconate Cell lysates was analyzed by nano-reverse-phase liquid chromatography-mass spectrometry (nano-RP-LC-MS), showing incorporation of 13C into organic acid metabolites such as itaconate.


Asunto(s)
Metabolómica/métodos , Animales , Cromatografía Liquida , Glucosa/metabolismo , Espectrometría de Masas , Metaboloma , Ratones , Células RAW 264.7 , Succinatos/metabolismo
11.
J Sep Sci ; 44(1): 426-437, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33090652

RESUMEN

High-resolution separation systems are essential for the analysis of complex mixtures in a wide variety of application areas. To increase resolution, multidimensional chromatographic techniques have been one key solution. Supercritical fluid chromatography provides a unique opportunity in these multidimensional separations based on its potential for high solvent compatibility, rapid duty cycles, and orthogonality to other separation modes. This review focuses on two-dimensional chromatography methods from the past decade that use supercritical fluid chromatography because of these advantages. Valving schemes and modulation strategies used to interface supercritical fluid chromatography with other liquid chromatography and gas chromatography techniques are described. Particular applications of multidimensional separations using supercritical fluid chromatography for the analysis of oils and chiral separations of pharmaceutical compounds are highlighted. Limitations of and a potential trajectory for supercritical fluid chromatography in this field are also discussed.

12.
Anal Methods ; 12(36): 4404-4417, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32901622

RESUMEN

Liquid chromatography coupled to mass spectrometry (LC-MS) is one of the most powerful tools in identifying and quantitating molecular species. Decreasing column diameter from the millimeter to micrometer scale is now a well-developed method which allows for sample limited analysis. Specific fabrication of capillary columns is required for proper implementation and optimization when working in the nanoflow regime. Coupling the capillary column to the mass spectrometer for electrospray ionization (ESI) requires reduction of the subsequent emitter tip. Reduction of column diameter to capillary scale can produce improved chromatographic efficiency and the reduction of emitter tip size increased sensitivity of the electrospray process. This improved sensitivity and ionization efficiency is valuable in analysis of precious biological samples where analytes vary in size, ion affinity, and concentration. In this review we will discuss common approaches and challenges in implementing nLC-MS methods and how the advantages can be leveraged to investigate a wide range of biomolecules.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Cromatografía Liquida
13.
Vaccines (Basel) ; 8(3)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722194

RESUMEN

The immune response to live-attenuated Francisella tularensis vaccine and its host evasion mechanisms are incompletely understood. Using RNA-Seq and LC-MS on samples collected pre-vaccination and at days 1, 2, 7, and 14 post-vaccination, we identified differentially expressed genes in PBMCs, metabolites in serum, enriched pathways, and metabolites that correlated with T cell and B cell responses, or gene expression modules. While an early activation of interferon α/ß signaling was observed, several innate immune signaling pathways including TLR, TNF, NF-κB, and NOD-like receptor signaling and key inflammatory cytokines such as Il-1α, Il-1ß, and TNF typically activated following infection were suppressed. The NF-κB pathway was the most impacted and the likely route of attack. Plasma cells, immunoglobulin, and B cell signatures were evident by day 7. MHC I antigen presentation was more actively up-regulated first followed by MHC II which coincided with the emergence of humoral immune signatures. Metabolomics analysis showed that glycolysis and TCA cycle-related metabolites were perturbed including a decline in pyruvate. Correlation networks that provide hypotheses on the interplay between changes in innate immune, T cell, and B cell gene expression signatures and metabolites are provided. Results demonstrate the utility of transcriptomics and metabolomics for better understanding molecular mechanisms of vaccine response and potential host-pathogen interactions.

14.
Anal Chem ; 92(13): 9305-9311, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32466643

RESUMEN

We demonstrate a method for facile differentiation of acidic, isomeric metabolites by attaching high proton affinity, piperidine-based chemical tags to each carboxylic acid group. These tags attach with high efficiency to the analytes, increase the signal, and result in the formation of multiply-charged cations. We illustrate the present approach with citrate and isocitrate, which are isomeric metabolites each containing three carboxylic acid groups. We observe a 20-fold increase in signal-to-noise for citrate and an 8-fold increase for isocitrate as compared to detection of the untagged analytes in negative mode. Collision-induced dissociation of the triply tagged, triply charged analytes results in distinct tandem mass spectra. The phenylene spacer groups limit proton mobility and enable access to structurally informative C-C bond cleavage reactions. Modeling of the gas-phase structures and dissociation chemistry of these triply charged analyte ions highlights the importance of hydroxyl proton mobilization in this low proton mobility environment. Tandem mass spectrometric analyses of deuterated congeners and MS3 spectra are consistent with the proposed fragment ion structures and mechanisms of formation. Direct evidence that these chemistries are more generally applicable is provided by subsequent analyses of doubly tagged, doubly charged malate ions. Future work will focus on applying these methods to identify new metabolites and development of general rules for structural determination of tagged metabolites with multiple charges.


Asunto(s)
Ácido Cítrico/química , Isocitratos/química , Piperidinas/química , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión , Ácido Cítrico/metabolismo , Deuterio/química , Isocitratos/metabolismo , Isomerismo
15.
J Vet Emerg Crit Care (San Antonio) ; 30(3): 264-271, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32108424

RESUMEN

OBJECTIVE: To design and evaluate a method to purify canine albumin from fresh frozen plasma (FFP) or stored plasma (SP) in a manner that could be applied clinically. DESIGN: In vitro experimental study. SETTING: FDA licensed Blood Bank Laboratory and University biochemistry laboratory. ANIMALS: None. INTERVENTIONS: Using equipment that is typically found in veterinary blood banks, plasma bags were thawed, injected with the heat stabilizing agent, sodium caprylate, and then heated and acidified to denature all but albumin proteins. Albumin-rich supernatant was removed, the pH was neutralized, and then pasteurized and refrigerated. Albumin and total plasma protein concentrations were measured and the product was cultured for bacteria at 0, 7, 14, 30, and 60 days post-processing. MEASUREMENTS AND MAIN RESULTS: Seventeen bags of plasma were analyzed for purity, yield, and sterility of the finished albumin product. Bags were divided into categories based on the age of the frozen plasma. Mean yield of albumin for all bags was 77.3% and mean purity was 91.2%. There was no difference between old stored plasma, new stored plasma, and FFP with regard to yield (P = 0.31) or purity (P = 0.24) based on one-way analysis of variances. Overall 1 of 17 bags of plasma (5.9%) tested positive for bacterial contamination on day 60 after processing. CONCLUSIONS: Sodium caprylate is able to stabilize canine albumin enabling it to withstand heating that denatures other plasma proteins. The resulting albumin product is of sufficient quality to potentially be used therapeutically as a colloidal resuscitative fluid. Further study is needed into its safety and effect in dogs.


Asunto(s)
Albúminas/química , Perros/sangre , Calor , Plasma/química , Desnaturalización Proteica , Animales , Proteínas Sanguíneas , Humanos
16.
Anal Bioanal Chem ; 411(24): 6399-6407, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31372700

RESUMEN

As microfluidic cell culture progresses, the need for robust and reproducible intracellular analyses grows. In particular, intracellular metabolites are subject to perturbation and degradation during the lysing process. The reliability of intracellular metabolomic analysis in microfluidic devices depends on the preservation of metabolite integrity during sample preparation and storage. Described here is a novel automated microfluidic system exhibiting the necessary rapid cellular lysis and quenching of enzymatic activity. Quenching efficiency was assessed using a novel ratiometric MALDI-MS-based assay of exogenous isotopic adenosine triphosphate (ATP) hydrolysis to isotopic adenosine diphosphate (ADP) as a marker of metabolite degradation. The lysis system of the microfluidic device was enhanced using a Peltier cooler to chill the lysate and quench aberrant enzymatic activity. Parameter optimization (flow rate, collection time, and temperature control) improved the endogenous and exogenous ADP/ATP ratios by 44.9% and 39.8% respectively consistent with traditional quenching techniques. The effects of chilling/quenching on metabolism were evaluated resulting in over 500 significant features compared to non-chilled from untargeted capillary LC-MS metabolomic analyses. These include increased levels of tryptophan, histidine, and pyruvate as well as decreased levels in UDP-N-acetylglucosamine. The results illustrate the need for both rapid lysis and quenching in microfluidic cell culture platforms. Graphical abstract.


Asunto(s)
Adenosina Trifosfato/metabolismo , Metabolómica , Microfluídica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Adenosina Difosfato/metabolismo , Automatización
17.
J Am Soc Mass Spectrom ; 30(7): 1158-1162, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30993635

RESUMEN

We demonstrate increasing the charge state of small molecules using derivatized lysine as our model system. Lysine is chemically tagged with three tertiary amines which enables efficient production of highly charged analytes. A +3 charge state is obtained from direct infusion nanoelectrospray conditions. Collisional activation of the +3 derivatized lysine yielded structurally informative product ions corresponding to cleavages across the analyte backbone and within the proton affinity tags. This suggests a role for multi-charging of metabolites in both targeted MRM analyses and untargeted analyses to help identify novel metabolites. Density functional calculations aid peak assignment and rationalization of structure-property relationships. Graphical Abstract.

18.
Cell Metab ; 29(1): 103-123.e5, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30344014

RESUMEN

Regulatory T (Treg) cells induce an immunosuppressive microenvironment that is a major obstacle for successful tumor immunotherapy. Dissecting the regulatory mechanisms between energy metabolism and functionality in Treg cells will provide insight toward developing novel immunotherapies against cancer. Here we report that human naturally occurring and tumor-associated Treg cells exhibit distinct metabolic profiles with selectivity for glucose metabolism compared with effector T cells. Treg-mediated accelerated glucose consumption induces cellular senescence and suppression of responder T cells through cross-talk. TLR8 signaling selectively inhibits glucose uptake and glycolysis in human Treg cells, resulting in reversal of Treg suppression. Importantly, TLR8 signaling-mediated reprogramming of glucose metabolism and function in human Treg cells can enhance anti-tumor immunity in vivo in a melanoma adoptive transfer T cell therapy model. Our studies identify mechanistic links between innate signaling and metabolic regulation of human Treg suppression, which may be used as a strategy to advance tumor immunotherapy.


Asunto(s)
Neoplasias de la Mama , Glucosa/metabolismo , Melanoma , Linfocitos T Reguladores/inmunología , Receptor Toll-Like 8/fisiología , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Senescencia Celular , Femenino , Humanos , Inmunoterapia , Melanoma/metabolismo , Melanoma/terapia , Ratones , Ratones Endogámicos NOD , Ratones SCID , Microambiente Tumoral
20.
Anal Chim Acta ; 1037: 274-280, 2018 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-30292302

RESUMEN

Ratiometric quantitation is used in mass spectrometry to account for variations in ionization efficiencies due to heterogenous sample matrixes. Isotopes are most commonly used to achieve ratiometric quantitation because of their ability to co-elute chromatographically with each other and to have similar ionization efficiencies. In the work presented here, a new non-isotopic quantitative tagging approach is presented which allows chromatographic co-elution and similar ionization efficiencies. Using two variations of maleimide tags, t-butyl and cyclohexyl maleimide, thiols are quantified with a high degree of linearity up to five-fold concentration differences. Because these two tags have similar hydrophobcities, they elute simultaneously which allows them to be used for ratiometric quantitation. Beyond the five-fold linear range, signal compression is observed. This technique was able to quantify thiol changes in both in vitro pharmacological treatments as well as in vivo diabetic tissue.


Asunto(s)
Espectrometría de Masas , Compuestos de Sulfhidrilo/análisis , Compuestos de Sulfhidrilo/metabolismo , Animales , Bovinos , Células Cultivadas , Cromatografía Liquida , Humanos , Músculos/química , Músculos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...